An Institute of NET-JRF, IIT-JAM, GATE, JEST, TIFR & M.Sc Entrance in **Physics & Physical Sciences**

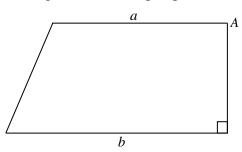
Learn Physics in Right Way

CSIR NET-JRF Physical Sciences Question Paper Sep-2022

Follow us @

Download Physics by fiziks App Official Website: http://physicsbyfiziks.com

For Enquiry Call us:


@ 011-2686-5455, +91-9871145498 Email us: fiziks.physics@gmail.com

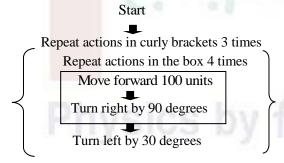
Head Office

Physics by fiziks House No. 40-D, Ground Floor, Jia Sarai Near IIT-Delhi, Hauz Khas, New Delhi-110016

Part-A

Q1. At what horizontal distance from A should a vertical line be drawn so as to divide the area of the trapezium shown in the figure into two equal parts? (a and b are lengths of the parallel sides.)

(a)
$$(a+b)/4$$


(c)
$$(a+b)/2$$

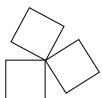
(b)
$$(a+b)/3$$

(b)
$$(a+b)/3$$

(d) $(2a+b)/2$

Ans.: (a)

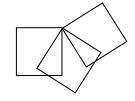
Q2. Starting from the top of a page and pointing downward, an ant moves according to the following commands

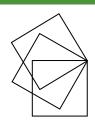


Of the following paths

(A)

(B)




(C) (D)

CSIR NET - 2021: Questions with Solution Physics

Which is the correct path of the ant?

(a) A

(b) B

(c) C

(d) D

Ans.: (a)

- Q3. Sections A, B, C and D of a class have 24, 27, 30 and 36 students, respectively. One section has boys and girls who are seated alternately in three rows, such that the first and the last positions in each row are occupied by boys. Which section could this be?
- (a) A

(b) *B*

(c) C

(d) D

Ans.: (b)

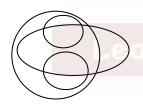
- Q4. A plant grows by 10% of its height every three months. If the plant's height today is 1 m, its height after one year is the closest to
- (a) 1.10 m

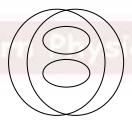
(b) 1.21 m

(c) 1.33 m

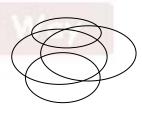
(d) 1.46 m

Ans.: (d)


Q5. The correct pictorial representation of the relations among the categories PLAYERS, FEMALE CRICKETERS, MALE FOOTBALLERS and GRADUATES is


A


В


C

D

(a) A

(b) B

(c) C

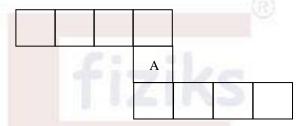
(d) D

Ans.: (a)

Q6. On a track of 200 m length, S runs from the starting point and R starts 20 m ahead of S at the same time. Both reach the end of the track at the same time. S runs at a uniform speed of 10 m/s. If R also runs at a uniform speed, what is R's speed (in m/s)?

Physics by fiziks Learn Physics in Right Way

(a) 9


(b) 10

(c) 12

(d) 8

Ans.: (a)

Q7. The squares in the following sketch are filled with digits 1 to 9, without any repetition, such that the numbers in the two horizontal rows add up to 20 each. What number appears in the square labelled A in the vertical column?

- (a) It cannot be ascertained in the absence of the sum of the numbers in the column
- (b) 3
- (c) 5
- (d) 7

Ans.: (c)

- **Q8.** Tokens numbered from 1 to 25 are mixed and one token is drawn randomly. What is the probability that the number on the token drawn is divisible either by 4 or by 6?
- (a) 8/25

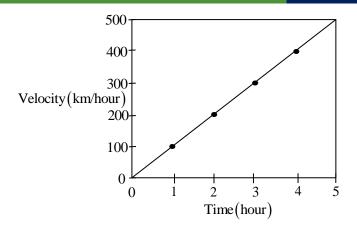
(b) 10/25

(c) 9/25

(d) 12/25

Ans.: (a)

- **Q9.** A beam of square cross-section is to be cut out of a wooden log. Assuming that the log is cylindrical, what approximately is the largest fraction of the wood by volume that can be fruitfully utilized as the beam?
- (a) 49%


(b) 64%

(c) 71%

(d) 81%

Ans.: (b)

Q10. Given plot describes the motion of an object with time.

- (a) The object is moving with a constant velocity.
- (b) The object covers equal distance every hour.
- (c) The object is accelerating.
- (d) Velocity of the object doubles every hour.

Ans.: (c)

Q11. In a four-digit PIN, the third digit is the product of the first two digits and the fourth digit is zero. The number of such PINs is

(a) 42

(b) 41

(c) 40

(d) 39

Ans.: (a)

Q12. I have a brother who is 4 years elder to me, and a sister who was 5 years old when my brother was born. When my sister was born, my father was 24 years old. My mother was 27 years old when I was born. How old (in years) were my father and mother, respectively, when my brother was born?

(a) 29 and 23

(b) 27 and 25

(c) 27 and 23

(d) 29 and 25

Ans.: (a)

- Q13. A liar always lies and a non-liar, never. If in a group of n persons seated around a round-table everyone calls his/her left neighbor a liar, then
- (a) all are liars.
- (b) *n* must be even and every alternate person is a liar
- (c) *n* must be odd and every alternate person is a liar
- (d) *n* must be a prime

Ans.: (b)

Physics by fiziks

Learn Physics in Right Way

Q14. A boy has kites of which all but 9 are red, all but 9 are yellow, all but 9 are green, and all but 9 are blue. How many kites does he have?

(a) 12

(b) 15

(c)9

(d) 18

Ans.: (a)

Q15. If one letter each is drawn at random from the words CAUSE and EFFECT, the chance that they are the same is

(a) 1/30


(b) 1/11

(c) 1/10

(d) 2/11

Ans.: (c)

Q16. A vehicle has tyres of diameter 1 m connected by a shaft directly to gearwheel A which meshes with gearwheel B as shown in the diagram. A has 12 teeth and B has 8. If points x on A and y on B are initially in contact, they will again be in contact after the vehicle has travelled a distance (in meters)

(a) 2π

(b) 3π

(c) 4π

(d) 12π

Ans.: (a)

Q17. After 12:00:00 the hour hand and minute hand of a clock will be perpendicular to each other for the first time at

(a) 12:16:21

(b) 12:15:00

(c) 13:22:21

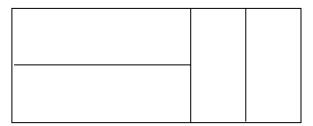
(d) 12:48:08

Ans.: (a)

Q18. What is the product of the number of capital letters and the number of small letters of the English alphabet in the following text?

A4;={c8%\$56((+B/;,.H&r]]](u];#~K@>83<??/STvx%^(d)L:/<-N347)))2;:\$+}E\$###[w}`''..;/89

(a) 17


(b) 37

(c) 53

(d) 63

Ans.: (d)

Q19. How many rectangles are there in the given figure?

(a) 6

(b) 7

(c) 8

(d) 9

Ans.: (c)

Q20. In a round-robin tournament, after each team has played exactly four matches, the number of wins / losses of 6 participating teams are as follows

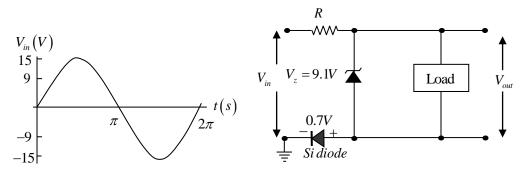
Team	Win	Loss
A	4	0
В	0	4
С	3	1
D	2	2
Е	0	4
F	3	1

Which of the two teams have certainly NOT played with each other?

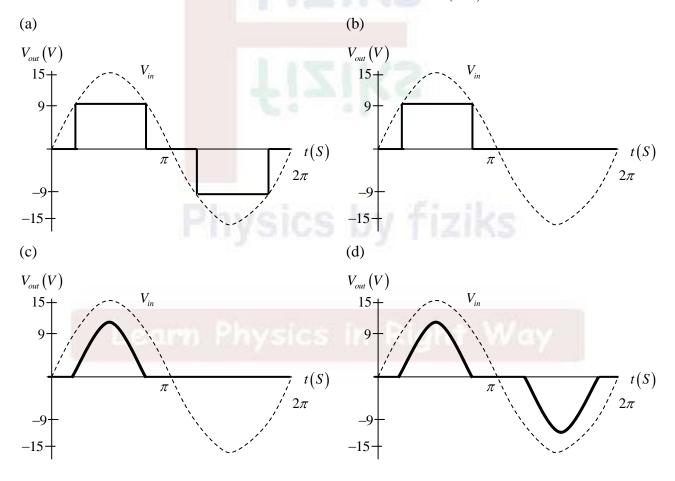
(a) A and B

(b) C and F

(c) E and D


(d) B and E

Ans.: (d)


Learn Physics in Right Way

Part-B

Q21. A high impedance load (network) is connected in the circuit as shown below.

The forward voltage drop for silicon diode is 0.7 V and the Zener voltage is 9.10 V. If the input voltage (V_{in}) is sine wave with an amplitude of 15 V (as shown in the figure above), which of the following waveform qualitatively describes the output voltage (V_{out}) across the load?

Ans.:(c)

Q22. Two $n \times n$ invertible real matrices A and B satisfy the relation

$$\left(AB\right)^{T} = -\left(A^{-1}B\right)^{-1}$$

If B is orthogonal then A must be

(a) Lower triangular

(b) Orthogonal

(c) Symmetric

(d) Antisymmetric

Ans.:(d)

Q23. The value of the integral $\int_0^\infty dx e^{-x^{2m}}$, where m is a positive integer, is

(a)
$$\Gamma\left(\frac{m+1}{2m}\right)$$

(b)
$$\Gamma\left(\frac{m-1}{2m}\right)$$

(c)
$$\Gamma\left(\frac{2m+1}{2m}\right)$$

(d)
$$\Gamma\left(\frac{2m-1}{2m}\right)$$

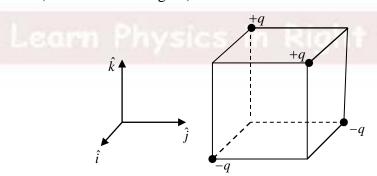
Ans.:(c)

Q24. In terms of a complete set of orthonormal basis kets $|n\rangle$,

 $n = 0, \pm 1, \pm 2, \dots$, the Hamiltonian is

$$H = \sum_{n} (E|n\rangle\langle n| + \in |n+1\rangle\langle n| + \in |n\rangle\langle n+1|)$$

where E and \in are constants. The state $|\varphi\rangle = \sum_{n} e^{in\varphi} |n\rangle$ is an eigenstate with energy


(a) $E + \in \cos \varphi$

(b) $E - \in \cos \varphi$

- (c) $E + 2 \in \cos \varphi$
- (d) $E-2 \in \cos \varphi$

Ans.: (c)

Q25. Two positive and two negative charges of magnitude q are placed on the alternate vertices of a cube of side a (as shown in the figure).

The electric dipole moment of this charge configuration is

- (a) $-2qa\hat{k}$
- (b) 2*qak*
- (c) $2qa(\hat{i} + \hat{j})$ (d) $2qa(\hat{i} \hat{j})$

Ans.:(b)

Physics by fiziks

Learn Physics in Right Way

Q26. If $z = i^{z^{-1}}$ (note that the exponent continues indefinitely), then a possible value of $\frac{1}{z} \ln z$ is

(a) $2i \ln i$

(b) ln *i*

(c) $i \ln i$

(d) $2 \ln i$

Ans.:(b)

Q27. The momentum space representation of the Schrodinger equation of a particle in a potential

$$V\left(\vec{r}\,\right) \ \ \mathrm{is}\left(\left|\vec{p}\right|^{2} + \beta\left(\nabla_{p}^{2}\right)^{2}\right)\psi\left(\vec{p},t\right) = i\hbar\frac{\partial}{\partial t}\psi\left(\vec{p},t\right), \ \ \mathrm{where}\left(\nabla_{p}\right)_{i} = \frac{\partial}{\partial p_{i}}, \ \ \mathrm{and} \ \ \beta \ \ \mathrm{is} \ \ \mathrm{a} \ \ \mathrm{constant}. \ \ \mathrm{The}$$

potential is (in the following V_0 and a are constants)

(a)
$$V_0 e^{-r^2/a^2}$$

(b)
$$V_0 e^{-r^4/a^4}$$

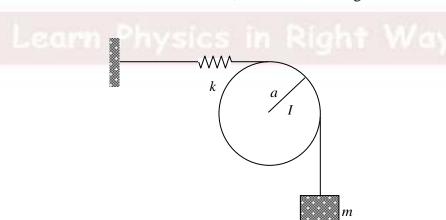
(c)
$$V_0 \left(\frac{r}{a}\right)^2$$

(d)
$$V_0 \left(\frac{r}{a}\right)^4$$

Ans.: (d)

Q28. A particle of rest mass m is moving with a velocity $v\hat{k}$, with respect to an inertial frame S. The energy of the particle as measured by an observer S', who is moving with a uniform velocity $u\hat{i}$ with respect to S (in terms of $\gamma_u = 1/\sqrt{1-u^2/c^2}$ and $\gamma_v = 1/\sqrt{1-v^2/c^2}$ is

(a)
$$\gamma_u \gamma_v m (c^2 - uv)$$


(b)
$$\gamma_u \gamma_v mc^2$$

(c)
$$\frac{1}{2}(\gamma_u + \gamma_v)mc^2$$

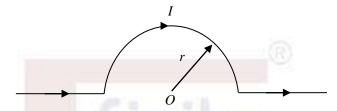
(d)
$$\frac{1}{2} (\gamma_u + \gamma_v) m (c^2 - uv)$$

Ans.:(b)

Q29. A wire, connected to a massless spring of spring constant k and a block of mass m, goes around a disc of radius a and moment of inertia I, as shown in the figure.

Assume that the spring remains horizontal, the pulley rotates freely and there is no slippage between the wire and the pulley. The angular frequency of small oscillations of the disc is

(a)
$$\sqrt{\frac{2ka^2}{ma^2+I}}$$


(b)
$$\sqrt{\frac{ka^2}{ma^2+I}}$$

(c)
$$\sqrt{\frac{ka^2}{ma^2 + 2I}}$$

(d)
$$\sqrt{\frac{ka^2}{2ma^2+I}}$$

Ans.: (b)

Q30. A part of an infinitely long wire, carrying a current I, is bent in a semi-circular arc of radius r (as shown in the figure).

The magnetic field at the centre O of the arc is

(a)
$$\frac{\mu_0 I}{4r}$$

(b)
$$\frac{\mu_0 I}{4\pi r}$$

(c)
$$\frac{\mu_0 I}{2r}$$

(d)
$$\frac{\mu_0 I}{2\pi r}$$

Ans.:(a)

Q31. If the average energy $\langle E \rangle_T$ of a quantum harmonic oscillator at a temperature T is such that $\langle E \rangle_T = 2 \langle E \rangle_{T \to 0}$, then T satisfies

(a)
$$\coth\left(\frac{\hbar\omega}{k_{B}T}\right) = 2$$

(a)
$$\coth\left(\frac{\hbar\omega}{k_BT}\right) = 2$$
 (b) $\coth\left(\frac{\hbar\omega}{2k_BT}\right) = 2$

(c)
$$\coth\left(\frac{\hbar\omega}{k_BT}\right) = 4$$

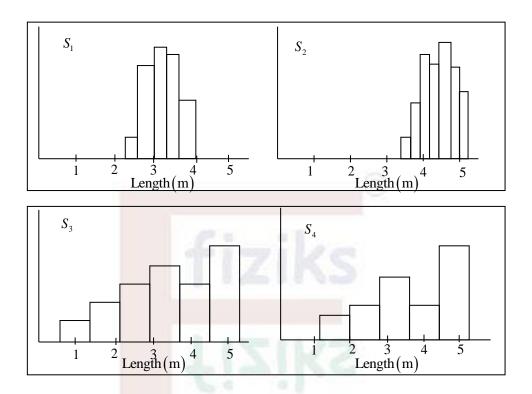
(d)
$$\coth\left(\frac{\hbar\omega}{2k_BT}\right) = 4$$

Ans.: (b)

Q32. An electromagnetic wave is incident from vacuum normally on a planer surface of a nonmagnetic medium. If the amplitude of the electric field of the incident wave is E_0 and that of the transmitted wave is $2E_0/3$, then neglecting any loss, the refractive index of the medium is

(a) 1.5

(b) 2.0


(c) 2.4

(d) 2.7

Ans.:(b)

Learn Physics in Right Way

Q33. Four students $(S_1, S_2, S_3 \text{ and } S_4)$ make multiple measurements on the length of a table. The binned data are plotted as histograms in the following figures.

If the length of the table, specified by the manufacturer, is 3m, the student whose measurements have the minimum systematic error, is

(a) S_2

(c) S_4

(b) S₁
(d) S₃

Ans.: (b)

Q34. If the expectation value of the momentum of a particle in one dimension is zero, then its (box-normalizable) wave function may be of the form

(a) $\sin kx$

(b) $e^{ikx} \sin kx$

(c) $e^{ikx}\cos kx$

(d) $\sin kx + e^{ikx} \cos kx$

Ans.: (a)

CSIR NET - 2021: Questions with Solution Physics

Physics by fiziks

Q35. The electric and magnetic fields in an inertial frame are $\vec{E} = 3a\hat{i} - 4\hat{j}$ and $\vec{B} = \frac{5a}{c}\hat{k}$, where a is a constant. A massive charged particle is released from rest. The necessary and sufficient condition that there is an inertial frame, where the trajectory of the particle is a uniform-pitched

(a) $1 < a < \sqrt{2}$

(b) -1 < a < 1

(c) $a^2 > 1$

helix, is

(d) $a^2 > 2$

Ans.: (c)

Q36. The Lagrangian of a system described by three generalized coordinates q_1, q_2 and q_3 is $L = \frac{1}{2}m(\dot{q}_1^2 + \dot{q}_2^2) + M\dot{q}_1\dot{q}_2 + k\dot{q}_1q_3$, where m, M and k are positive constants. Then, as a function of time

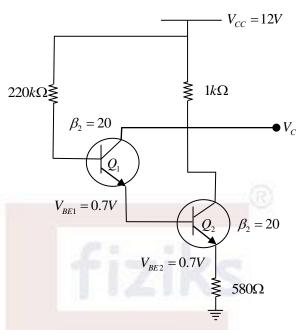
- (a) two coordinates remain constant and one evolves linearly
- (b) one coordinate remains constant, one evolves linearly and the third evolves as a quadratic function
- (c) one coordinate evolves linearly and two evolve quadratically
- (d) all three evolve linearly

Ans.: (a)

Q37. Consider the Hamiltonian $H = AI + B\sigma_x + C\sigma_y$, where A, B and C are positive constants, I is the 2 × 2 identity matrix and σ_x, σ_y are Pauli matrices. If the normalized eigenvector corresponding to its largest energy eigenvalue is $\frac{1}{\sqrt{2}} \binom{1}{y}$, then y is

(a)
$$\frac{B+iC}{\sqrt{B^2+C^2}}$$

(b)
$$\frac{A - iB}{\sqrt{A^2 + B^2}}$$


(c)
$$\frac{A - iC}{\sqrt{A^2 + C^2}}$$

(d)
$$\frac{B - iC}{\sqrt{B^2 + C^2}}$$

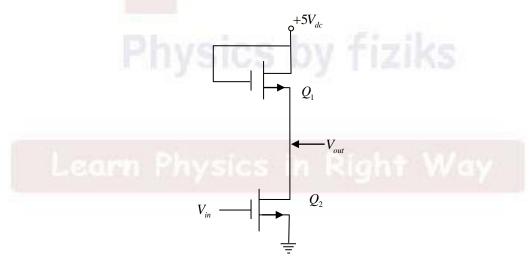
Ans.: (a)

Learn Physics in Right Way

Q38. The figure below shows a circuit with two transistors, Q_1 and Q_2 , having current gains β_1 and β_2 respectively.

The collector voltage V_C will be closest to

(a) 0.9 V


(b) 2.2 V

(c) 2.9 V

(d) 4.2 V

Ans.: (b)

Q39. The circuit containing two *n*-channel MOSFETs shown below, works as

(a) a buffer

(b) a non-inverting amplifier

(c) an inverter

(d) a rectifier

Ans.: (c)

Q40. At z = 0, the function $\frac{1}{z - \sin z}$ of a complex variable z has

(a) no singularity

(b) a simple pole

(c) a pole of order 2

(d) a pole of order 3

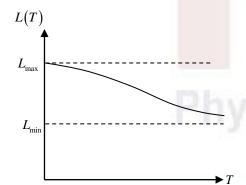
Ans.:(d)

Q41. The infinite series $\sum_{n=0}^{\infty} (n^2 + 3n + 2) x^n$ evaluated at $x = \frac{1}{2}$, is

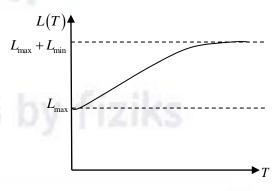
- (a) 16
- (b) 32

- (c) 8
- (d) 24

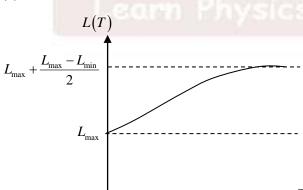
Ans. :(a)

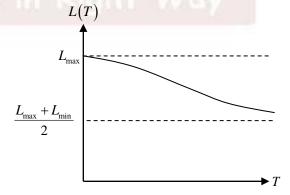

Q42. A walker takes steps, each of length L, randomly in the directions along east, west, north and south. After four steps its distance from the starting point is d. The probability that $d \le 3L$ is

- (a) 63/64
- (b) 59/64
- (c) 57/64
- (d) 55/64


Ans.: (d)

Q43. An elastic rod has a low energy state of length L_{max} and high energy state of length L_{min} . The best schematic representation of the temperature (T) dependence of the mean equilibrium length L(T) of the rod, is


(a)


(b)

(c)

(d)

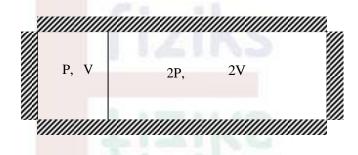
Ans.: (d)

Learn Physics in Right Way

Q44. The periods of oscillation of a simple pendulum at the sea level and at the top of a mountain of height 6 km are T_1 and T_2 , respectively. If the radius of earth is approximately 6000

km, then $\frac{\left(T_2 - T_1\right)}{T_1}$ is closest to

 $(a) - 10^{-4}$


 $(b) - 10^{-3}$

(c) 10^{-4}

(d) 10⁻³

Ans.: (d)

Q45. A thermally isolated container, filled with an ideal gas at temperature T, is divided by a partition, which is clamped initially, as shown in the figure below.

The partition does not allow the gas in the two parts to mix. It is subsequently released and allowed to move freely with negligible friction. The final pressure at equilibrium is

(a) 5P/3

(b) 5P/4

(c) 3P/5

(d) 4P/5

Ans. :(a)

Learn Physics in Right Way

Part-C

Q46. Two small metallic objects are embedded in a weakly conducting medium of conductivity σ and dielectric constant \in . A battery connected between them leads to a potential difference V_0 . It is subsequently disconnected at time t = 0. The potential difference at a later time t is

(a) $V_0 e^{-\frac{t\sigma}{4\epsilon}}$

(b) $V_0 e^{-\frac{t\sigma}{2\epsilon}}$

(c) $V_0 e^{-\frac{3t\sigma}{4\epsilon}}$

(d) $V_0 e^{-\frac{t\sigma}{\epsilon}}$

Ans. :(d)

Q47. The elastic scattering process $\pi^- p \to \pi^- p$ may be treated as a hard-sphere scattering. The mass of π^- , $m_\pi = \frac{1}{6} m_p$, where $m_p = 938 \text{MeV}/c^2$ is the mass of the proton. The total scattering cross-section is closet to

(a) 0.01 milli-barn

(b) 1 milli-barn

(c) 0.1 barn

(d) 10 barn

Ans.: (c)

Q48. Earth may be assumed to be an axially symmetric freely rotating rigid body. The ratio of the principal moments of inertia about the axis of symmetry and an axis perpendicular to it is 33:32. If T_0 is the time taken by earth to make one rotation around its axis of symmetry, then the time period of precession is closest to

(a) $33T_0$

(b) $33T_0/2$ (d) $16T_0$

(c) $32T_0$

Ans.: (c)

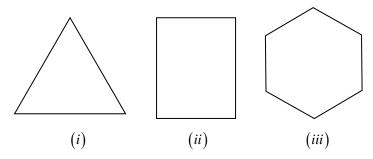
Q49. A system of N non-interacting particles in one-dimension, each of which is in a potential $V(x) = gx^6$ where g > 0 is a constant and x denotes the displacement of the particle from its equilibrium position. In thermal equilibrium, the heat capacity at constant volume is

(a) $\frac{7}{6}Nk_B$

(b) $\frac{4}{3}Nk_B$

(c) $\frac{3}{2}Nk_B$

(d) $\frac{2}{3}Nk_B$


Ans.: (d)

Physics by fiziks

Learn Physics in Right Way

Q50. The Figures (i), (ii) and (iii) below represent an equilateral triangle, a rectangle and a regular hexagon, respectively.

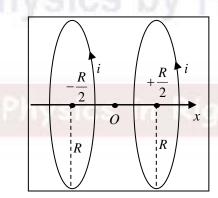
Which of these can be primitive unit cells of a Bravais lattice in two dimensions?

- (a) only (i) and (iii) but not (ii)
- (b) only (i) and (ii) but not (iii)
- (c) only (ii) and (iii) but not (i)
- (d) All of them

Ans.: (c)

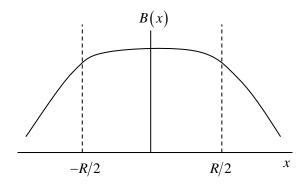
Q51. The electronic configuration of ${}^{12}C$ is $1s^22s^22p^2$. Including LS coupling, the correct ordering of its energies is

(a)
$$E({}^{3}P_{2}) < E({}^{3}P_{1}) < E({}^{3}P_{0}) < E({}^{1}D_{2})$$
 (b) $E({}^{3}P_{0}) < E({}^{3}P_{1}) < E({}^{3}P_{2}) < E({}^{1}D_{2})$

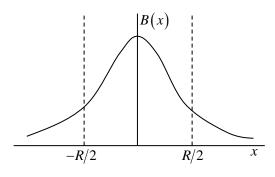

(b)
$$E(^3P_0) < E(^3P_1) < E(^3P_2) < E(^1D_2)$$

(c)
$$E({}^{1}D_{2}) < E({}^{3}P_{2}) < E({}^{3}P_{1}) < E({}^{3}P_{0})$$
 (d) $E({}^{3}P_{1}) < E({}^{3}P_{0}) < E({}^{3}P_{2}) < E({}^{1}D_{2})$

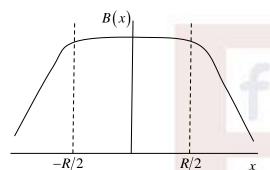
(d)
$$E(^{3}P_{1}) < E(^{3}P_{0}) < E(^{3}P_{2}) < E(^{1}D_{2})$$

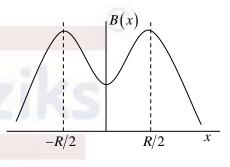

Ans.: (b)

Q52. Two parallel conducting rings, both of radius R, are separated by a distance R. The planes of the rings are perpendicular to the line joining their centres, which is taken to be the x-axis.



If both the rings carry the same current i along the same direction, the magnitude of the magnetic field along the x-axis is best represented by


(a)


(b)

(c)

(d)

Ans.: (a)

Q53. The energy/energies E of the bound state(s) of a particle of mass m in one dimension in the

potential
$$V(x) = \begin{cases} \infty, & x \le 0 \\ -V_0, & 0 < x < a \\ 0, & x \ge a \end{cases}$$
 (where $V_0 > 0$) is/are determined by

(a)
$$\cot^2 \left(a \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \right) = \frac{E-V_0}{E}$$

(b)
$$\tan^2\left(a\sqrt{\frac{2m(E+V_0)}{\hbar^2}}\right) = -\frac{E}{E+V_0}$$

(c)
$$\cot^2 \left(a \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \right) = -\frac{E}{E+V_0}$$
 (d) $\tan^2 \left(a \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \right) = \frac{E-V_0}{E}$

(d)
$$\tan^2 \left(a \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \right) = \frac{E-V_0}{E}$$

Ans.: (c)

Physics by fiziks

Learn Physics in Right Way

Q54. The matrix corresponding to the differential operator $\left(1 + \frac{d}{dx}\right)$ in the space of polynomials

of degree at most two, in the basis spanned by $f_1 = 1$, $f_2 = x$ and $f_3 = x^2$, is

(a)
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

Ans.: (a)

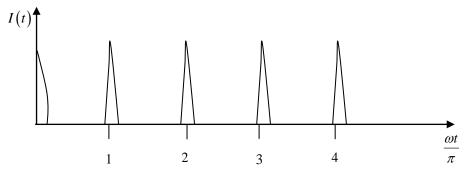
Q55. The energy levels of a system, which is in equilibrium at temperature $T = 1/(k_B \beta)$, are $0, \in$ and 2∈. If two identical bosons occupy these energy levels, the probability of the total energy being $3 \in$, is

(a)
$$\frac{e^{-3\beta\epsilon}}{1 + e^{-\beta\epsilon} + e^{-2\beta\epsilon} + e^{-3\beta\epsilon} + e^{-4\beta\epsilon}}$$

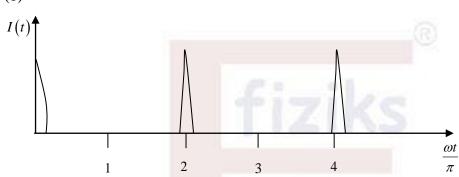
(a)
$$\frac{e^{-3\beta\epsilon}}{1 + e^{-\beta\epsilon} + e^{-2\beta\epsilon} + e^{-3\beta\epsilon} + e^{-4\beta\epsilon}}$$
 (b)
$$\frac{e^{-3\beta\epsilon}}{1 + 2e^{-\beta\epsilon} + 2e^{-2\beta\epsilon} + e^{-3\beta\epsilon} + e^{-4\beta\epsilon}}$$
 (c)
$$\frac{e^{-3\beta\epsilon}}{e^{-\beta\epsilon} + 2e^{-2\beta\epsilon} + e^{-3\beta\epsilon} + e^{-4\beta\epsilon}}$$
 (d)
$$\frac{e^{-3\beta\epsilon}}{1 + e^{-\beta\epsilon} + 2e^{-2\beta\epsilon} + e^{-3\beta\epsilon} + e^{-4\beta\epsilon}}$$

(c)
$$\frac{e^{-3\beta\epsilon}}{e^{-\beta\epsilon} + 2e^{-2\beta\epsilon} + e^{-3\beta\epsilon} + e^{-4\beta\epsilon}}$$

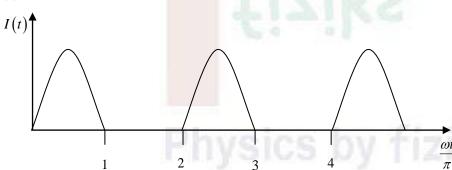
(d)
$$\frac{e^{-3\beta\epsilon}}{1+e^{-\beta\epsilon}+2e^{-2\beta\epsilon}+e^{-3\beta\epsilon}+e^{-4\beta\epsilon}}$$

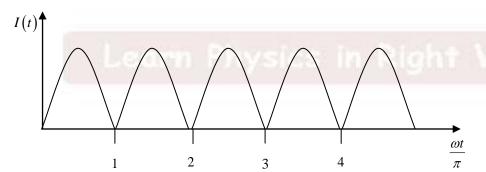

Ans.: (d)

Q56. A high frequency voltage signal $V_i = V_m \sin \omega t$ is applied to a parallel plate deflector as shown in the figure.



An electron beam is passing through the deflector along the central line. The best qualitative representation of the intensity I(t) of the beam after it goes through the narrow circular aperture D, is




(b)

(c)

(d)

Ans.: (a)

Physics by fiziks

Learn Physics in Right Way

Q57. An amplifier with a voltage gain of 40 dB without feedback is used in an electronic circuit. A negative feedback with a fraction 1/40 is connected to the input of this amplifier. The net gain of the amplifier in the circuit is closest to

(a) 40 dB

(b) 37 dB

(c) 29 dB

(d) 20 dB

Ans.:(c)

Q58. The Raman rotational-vibrational spectrum of nitrogen molecules is observed using an incident radiation of wavenumber 12500 cm⁻¹. In the first shift band, the wavenumbers of the observed lines (in cm⁻¹) are 10150, 10158, 10170, 10182 and 10190. The values of vibrational frequency and rotational constant (in cm⁻¹), respectively, are

(a) 2330 and 2

(b) 2350 and 2

(c) 2350 and 3

(d) 2330 and 3

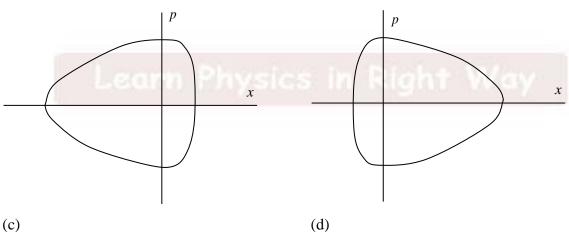
Ans.: (a)

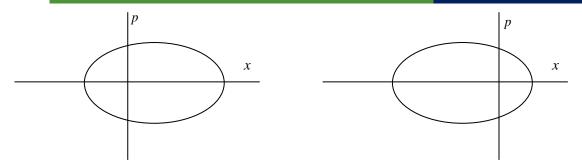
Q59. The value of the integral $\int_{-\infty}^{\infty} \frac{\cos \alpha x}{x^2 + 1} dx$, for $\alpha > 0$, is

(a) πe^{α}

(b) $\pi e^{-\alpha}$

(c) $\pi e^{-\alpha/2}$


(d) $\pi e^{\alpha/2}$


Ans.:(b)

Q60. The Lagrangian of a particle in one dimension is $L = \frac{m}{2}\dot{x}^2 - ax^2 - V_0e^{-10x}$ where a and V_0 are positive constants. The best qualitative representation of a trajectory in the phase space is

(b)

(a)

Ans.: (b)

Q61. The tensor component of the nuclear force may be inferred from the fact that deuteron nucleus ${}_{1}^{2}H$

- (a) has only one bound state with total spin S=1
- (b) has a non-zero electric quadrupole moment in its ground state
- (c) is stable while triton ${}_{1}^{3}H$ is unstable
- (d) is the only two nucleon bound state

Ans.: (b)

Q62. In the absorption spectrum of H-atom, the frequency of transition from the ground state to the first excited state is v_H . The corresponding frequency for a bound state of a positively charged muon (μ^+) and an electron is ν_{μ} . Using $m_{\mu} = 10^{-28}$ kg, $m_e = 10^{-30}$ kg and $m_p \square m_e$, m_{μ} , the value of $(v_{\mu} - v_{H})/v_{H}$ is (b) – 0.001

(a) 0.001

$$(b) - 0.001$$

(c) - 0.01

Ans.: (c)

Q63. To first order in perturbation theory, the energy of the ground state of the Hamiltonian

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 + \frac{\hbar\omega}{\sqrt{512}} \exp\left[-\frac{m\omega}{\hbar}x^2\right]$$

(treating the third term of the Hamiltonian as a perturbation) is

(a) $\frac{15}{32}\hbar\omega$

(b) $\frac{17}{32}\hbar\omega$

(c) $\frac{19}{32}\hbar\omega$

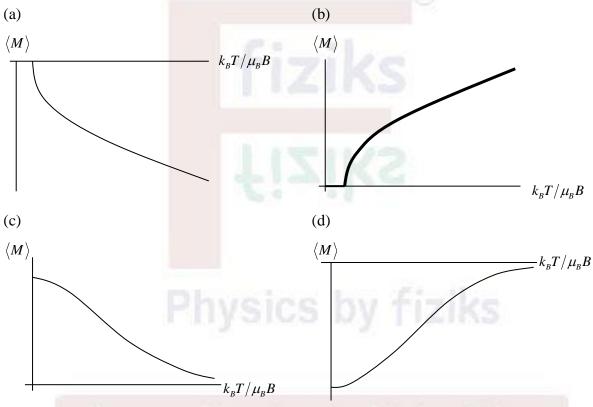
(d) $\frac{21}{32}\hbar\omega$

Ans.: (b)

Learn Physics in Right Way

Q64. A receiver operating at 27°C has an input resistance of 100Ω . The input thermal noise voltage for this receiver with a bandwidth of 100 kHz is closest to

(a) 0.4 nV


(b) 0.6 pV

(c) 40 mV

(d) $0.4 \mu V$

Ans.:(d)

Q65. A paramagnetic salt with magnetic moment per ion $\mu_{\pm} = \pm \mu_{B}$ (where μ_{B} is the Bohr magneton) is in thermal equilibrium at temperature T in a constant magnetic field B. The average magnetic moment $\langle M \rangle$, as a function of $\frac{k_{B}T}{\mu_{B}B}$, is best represented by

Ans.: (c)

Q66. The Hamiltonian for a spin-1/2 particle in a magnetic field $\vec{B} = B_0 \hat{k}$ is given by $H = \lambda \vec{S} \cdot \vec{B}$, where \vec{S} is its spin (in units of \hbar) and λ is a constant. If the average spins density is $\langle \vec{S} \rangle$ for an ensemble of such non-interacting particles, then $\frac{d}{dt} \langle S_x \rangle$

(a) $\frac{\lambda}{\hbar} B_0 \langle S_x \rangle$

(b) $\frac{\lambda}{\hbar} B_0 \langle S_y \rangle$

(c) $-\frac{\lambda}{\hbar}B_0\langle S_x\rangle$

(d) $-\frac{\lambda}{\hbar}B_0\langle S_y\rangle$

Ans.: (d)

Q67. The Lagrangian of system of two particles is $L = \frac{1}{2}\dot{x}_1^2 + 2\dot{x}_2^2 - \frac{1}{2}(x_1^2 + x_2^2 + x_1x_2)$. The normal

frequencies are best approximated by

(a) 1.2 and 0.7

(b) 1.5 and 0.5

(c) 1.7 and 0.5

(d) 1.0 and 0.4

Ans.: (d)

Q68. The Laplace transform L[f](y) of the function $f(x) = \begin{cases} 1 & \text{for } 2n \le x \le 2n+1 \\ 0 & \text{for } 2n+1 \le x \le 2n+2 \end{cases}$

 $n = 0.1, 2, \dots$ is

(a)
$$\frac{e^{-y}(e^{-y}+1)}{y(e^{-2y}+1)}$$

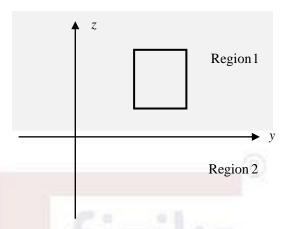
(b)
$$\frac{e^{y} - e^{-y}}{y}$$

$$(c) \frac{e^y + e^{-y}}{y}$$

(b)
$$\frac{e^{y} - e^{-y}}{y}$$
(d) $\frac{e^{y}(e^{y} - 1)}{y(e^{2y} - 1)}$

Ans.:(d)

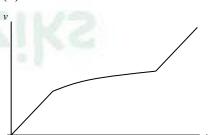
Q69. At time t = 0, a particle is in the ground state of the Hamiltonian $H(t) = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2 + \lambda x\sin\frac{\omega t}{2}$ where λ , ω and m are positive constants. To $O(\lambda^2)$, the probability that at $t = \frac{2\pi}{\omega}$, the particle would be in the first excited state of H(t=0) is

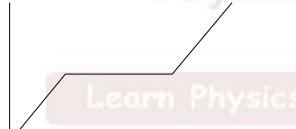

- (a) $\frac{9\lambda^2}{16m\hbar\omega^3}$
- (b) $\frac{9\lambda^2}{8m\hbar\omega^3}$
- (c) $\frac{16\lambda^2}{9m\hbar\omega^3}$

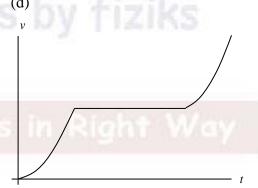
(d) $\frac{8\lambda^2}{9m\hbar\omega^3}$

Ans.: (d)

Learn Physics in Right Way


Q70. A square conducting loop in the yz-plane, falls downward under gravity along the negative z-axis. Region 1, defined by z > 0 has a uniform magnetic field $\vec{B} = B_0 \hat{i}$ while region 2 (defined by z < 0) has no magnetic field.


The time dependence of the speed v(t) of the loop, as it starts to fall from well within the region 1 and passes into the region 2, is best represented by


(a)

(c)

Ans.:(b)

Q71. A bucket contains 6 red and 4 blue balls. A ball is taken out of the bucket at random and two balls of the same colour are put back. This step is repeated once more. The probability that the numbers of red and blue balls are equal at the end, is

(a) 4/11

(b) 2/11

(c) 1/4

(d) 3/4

Ans.: (b)

Q72. The energies of a two-level system are $\pm E$. Consider an ensemble of such non-interacting systems at a temperature T. At low temperatures, the leading term in the specific heat depends on T as

(a)
$$\frac{1}{T^2}e^{-E/k_BT}$$

(b)
$$\frac{1}{T^2}e^{-2E/k_BT}$$

(c)
$$T^2e^{-E/k_BT}$$

(d)
$$T^2 e^{-2E/k_B T}$$

Ans.: (b)

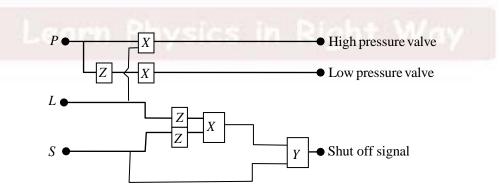
Q73. Thermal neutrons may be detected most efficiently by a

- (a) ⁶Li loaded plastic scintillator
- (b) Geiger-Muller counter
- (c) inorganic scintillator CaF₂
- (d) silicon detector

Ans.: (a)

Q74. A stationary magnetic dipole $\vec{m} = m\hat{k}$ is placed above an infinite surface (z = 0) carrying a uniform surface current density $\vec{\kappa} = k\hat{i}$. The torque of the dipole is

(a)
$$\frac{\mu_0}{2} mk\hat{i}$$


(b)
$$-\frac{\mu_0}{2} mk\hat{i}$$

(d) $-\frac{\mu_0}{2} mk\hat{j}$

(c)
$$\frac{\mu_0}{2} m k \hat{j}$$

(d)
$$-\frac{\mu_0}{2} mk\hat{j}$$

Ans.:(a)

Q75. A liquid oxygen cylinder system is fitted with a level-sensor (L) and a pressure-sensor (P), as shown in the figure below. The output of L and P are set to logic high (S=1) when the measured values exceed the respective preset threshold values. The system can be shut off either by an operator by setting the input S to high, or when the level of oxygen in the tank falls below the threshold value

The logic gates X, Y and Z, respectively, are

(a) OR, AND and NOT

(b) AND, OR and NOT

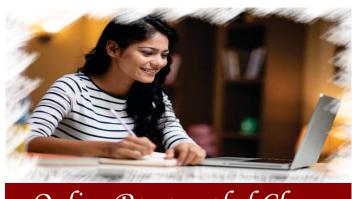
(c) NAND, OR and NOT

(d) NOR, AND and NOT

Ans.:(b)

Physics by fiziks

Pioneering Excellence Since Year 2008


Learn Physics in Right Way

Learn Physics in Right Way

Courses for NET-JRF, GATE, JEST and TIFR

Online Pre-recorded Classes

Study Material

Online Test Series

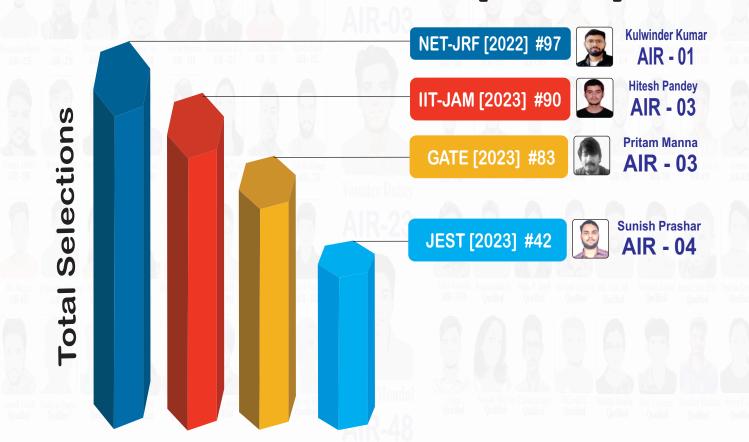
Interview Guidance

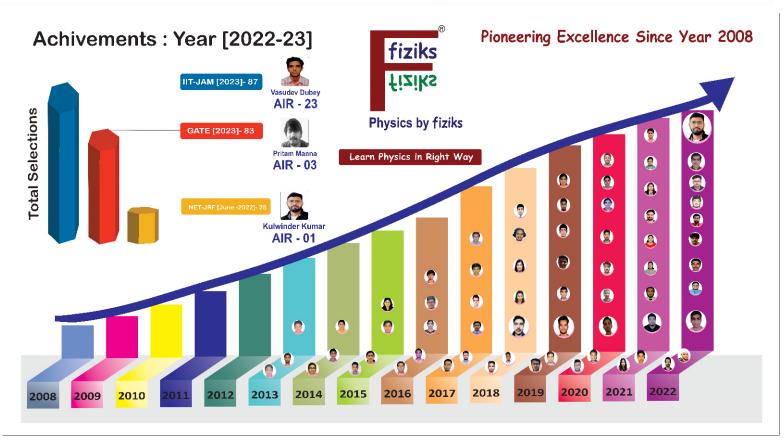
Our Teaching Methodologies

- Well Planned Course Structure
- Develop Conceptual Clarity
- Learn Problem Solving Techniques
- Build Speed and Accuracy
- Individual Mentoring
- One on One Discussion

- Instant Doubts Clearing
- Steps to Achieve Competence [QIP]
- Better Time Management
- Performance Analysis
- Student Learning Outcome

Be Part of Disciplined Learning




Head Office: House No. 40-D, Ground Floor, Jia Sarai Near IIT-Delhi. Hauz Khas. New Delhi-110016

rn Physics in Right Way

Achivements: Year [2022-23]

